Non Invasive Real Time Estimation of Cardiac Output Through Analysis of Arterial Waveforms

Samrudh Shenoy, Dr. Anoop Rao, Dr. Xina Quan

Los Altos, CA, USA

Abstract

Cardiac output (CO) is defined as the volume of blood pumped out of the heart per unit time, typically in L/min. It is either directly measured or determined by calculating the product of Stroke Volume and Heart Rate, factors which are traditionally measured through an invasive approach in an ICU, such as a catheter, arterial line, etc. However, a non-invasive approach to calculate CO is far more convenient, cheaper, and does not require setup or calibration from a medical professional. In this paper, I 1) Introduce a non-invasive sensor technology which can estimate a variety of medical blood-flow related values in real time, 2) Propose several ways to arrive at a viable measurement of real-time CO, and 3) Compare the results and come to a conclusion of whether there is an accurate method, and if so, which method is the most accurate.

1. Introduction

We have developed a new device to continuously and noninvasively infer the blood pressure of neonates through changes in capacitance measured over a pulse point such as a radial artery.

Patient characteristics: Our IRB-approved study evaluated 11 neonates less than 1 week old with umbilical catheters.

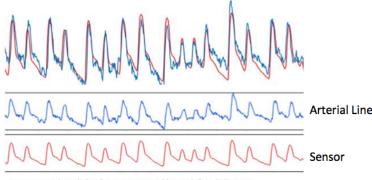

Device Design: The small, lightweight (<12g), paper-thin ($\sim50\mu m$), flexible, and extremely sensitive array of 4 sensors is incorporated into a disposable stretchable band that wraps around the wrist or foot (**Fig 1.1**). Reusable lightweight, low-power electronics acquire pulse waveform data and stream it in real-time to a custom Android application or bedside monitor. BP values are extracted from the cNIBP pulse waveform data in post-processing.

Figure 1.1: [Small form factor wrist/foot worn continuous non-invasive BP sensor in neonates]

This small, lightweight device does not require intimate skin contact. It is low cost, easy to use and less perturbing to the patient than an IAL or other non-invasive cNIBP options. In general, cNIBP Sensor data (blue) correlates well with IAL data (red) taken simultaneously (**Fig. 1.2**). Figure 1.2: [Raw cNIBP radial sensor data (blue) scaled to overlay radial arterial line data (red) taken simultaneously on the opposite wrist]

Sensor on right radial pulse point; arterial line in left radial artery

2. Methods

2.1 Feature Extraction

BP Derivation: The Android application uses proprietary and highly-efficient artificial neural network (ANN) algorithms to derive blood pressure values (listed in **Table 2.1**) from measured pulse waveform data measured in real-time.

Accuracy metrics: Since the eventual goal is to apply for FDA clearance, we chose to aim to meet the accuracy specifications outlined by the FDA, i.e. a mean average error (MAE) <±5 mmHg and standard deviation (SD) <8 mmHg.

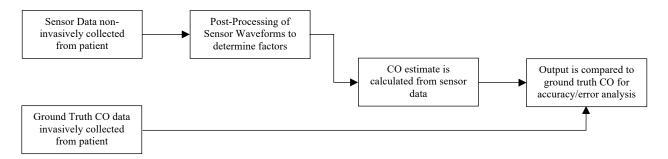
Table 2.1. Sensor-Determined Features

Feature	Description
P_s	Systolic Blood Pressure
P_d	Diastolic Blood Pressure
P_p	Pulse Pressure
P_m	Mean Arterial Pressure
f	Heart Rate

2.2 Formulas

Listed in **Table 2.2** are three different formulas using the features (noted in **Table 2.1**) to arrive at a reasonable estimate of $CO(CO_{EST})$: Mean Pressure, the Windkessel model, and the formula developed by Liljestrand and Zander. Each CO_{EST} is to be multiplied by a calibration factor,

to obtain CO values. This constant is equivalent to CO / CO_{EST} for each patient and the average of each quotient was regarded the calibration factor.


Table 2.2. Formulas and Inputs

Mean Pressure	$P_M \bullet f$
Windkessel	$(P_S - P_D) \bullet f$
Liljestrand & Zander	$\frac{BP_S - BP_D}{BP_S + BP_D} \bullet f$

2.3 Algorithm Evaluation

The files used in the computations consist of one sensor file, containing all the sensor recorded data and estimations for different elements over approximately 8 heartbeats, as well as a corresponding ground truth file used for comparison, containing (invasively) measured data recorded simultaneously and containing values for the corresponding elements. A Python script is used to read in these files, identify the different factors, and calculate the Cardiac Output product using the formulas [Table 2.2].

Figure 2.3. Block diagram of process. Input is live-processed sensor data, from which CO_{EST} is calculated and the product compared to ground truth CO for further analysis.

Acknowledgements

Dr. Xina Quan

Co-Founder/CTO, PyrAmes Inc. Cupertino, California 408-569-5215 xquan@pyrameshealth.com

Dr. Anoop Rao

Clinical Neonatologist, Stanford Health Care Pediatrics Palo Alto, California (650) 724-9954 anooprao@stanford.edu

Reference Publications

"A Signal Abnormality Index for Arterial Blood Pressure Waveforms" *CinC*, Computing in Cardiology. Accessed 28 Nov. 2019.

[http://www.cinc.org/Proceedings/2006/pdf/0013.pdf]

"Estimating cardiac output from blood pressure and heart rate: the Liljestrand & Zander formula" *NCBI*, US National Library of Medicine — National Institutes of Health. Accessed 11 Jan. 2020.

[https://www.ncbi.nlm.nih.gov/pubmed/25996703]